
Understanding the Basics of pd.join
pd.join is a powerful function in the Python Pandas library that allows you to merge multiple DataFrames based on their indices or columns. This function is particularly useful when you need to combine data from different sources or datasets that share a common key. In this article, we will delve into the details of pd.join, exploring its various parameters and use cases.
Function Syntax
The syntax for pd.join is quite straightforward:
pd.DataFrame.join(key, on=None, how='left', left_on=None, right_on=None, left_index=False, right_index=False, sort=True, kwargs)
Here’s a breakdown of the parameters:
- key: The key to join on. This can be a single column name, a list of column names, or a MultiIndex.
- on: The key to join on in the right DataFrame. If not specified, it defaults to the key parameter.
- how: The type of join to perform. Options include ‘left’, ‘right’, ‘outer’, and ‘inner’.
- left_on: The key to join on in the left DataFrame. If not specified, it defaults to the key parameter.
- right_on: The key to join on in the right DataFrame. If not specified, it defaults to the key parameter.
- left_index: If True, use the index of the left DataFrame as the key.
- right_index: If True, use the index of the right DataFrame as the key.
- sort: If True, sort the resulting DataFrame by the key.
Join Types
pd.join supports four types of joins: left, right, outer, and inner.
- Left Join: Returns all rows from the left DataFrame and the matched rows from the right DataFrame. The unmatched rows in the right DataFrame will have NaN values in the joined columns.
- Right Join: Returns all rows from the right DataFrame and the matched rows from the left DataFrame. The unmatched rows in the left DataFrame will have NaN values in the joined columns.
- Outer Join: Returns all rows when there is a match in either left or right DataFrame. Unmatched rows will have NaN values in the non-matching columns.
- Inner Join: Returns only the rows when there is a match in both left and right DataFrames.
Example: Left Join
Let’s consider two DataFrames, df1 and df2:
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'key': ['K0', 'K1', 'K0', 'K2']})df2 = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3'], 'key': ['K0', 'K0', 'K0', 'K3']})
Now, let’s perform a left join on the ‘key’ column:
result = df1.join(df2, on='key', how='left')print(result)
Output:
A B key C D0 A0 B0 K0 C0 D01 A1 B1 K1 C1 D12 A2 B2 K0 C0 D03 A3 B3 K2 C3 D3
Example: Outer Join
Let’s perform an outer join on the ‘key’ column:
result = df1.join(df2, on='key', how='outer')print(result)
Output:
A B key C D0 A0 B0 K0 C0 D01 A1